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ABSTRACT

The optimal linear quadratic guidance problem with an accelerating 1t

target is investigated. The missile state is partitioned into a kine-

matic state and an airframe state. Both the penalty-weighted and con-
strained terminal state cases are treated. The resulting optimal guid-
ance law requires estimates of target accelerations which are derived

via linear observers. Results of a point mass missile, a one-time i

i e

' constant missile, and a two-time constant missile are given.
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SECTION I

INTRODUCTION

This report examines minimum control cost, minimum terminal miss
guidance for the interéépt of a maneuvering target by a missile with
inherent airframe and autopilot dynamic properties. Particular atten-
tion is given to the idealized problem of zero terminal miss, wherein
the control gains are given in terms of the state transition of the un-
coupled airframe dynamics. This approach separates the kinematic por-
tion of the intercept dynamics, which is common for all intercept prob-
lems, from the kinetic portion of the missile dynamics. The particular
problem structure makes the results applicable to a variety of pursuit-
evasion problems in which the missile airframe can be represented by a
linear model.

The resulting control law developed in this paper has a term re-
lated to the intercept kinematics, which is recognizable as the general-
ized proportional navigation term. A second term in the control law is
a linear function of the missile airframe state and represents the guid-
ance compensation due to finite airframe dynamics. The final term in
the guidance law is related to target motion, providing an effective
control in cases where target motion can be measured or predicted
accurately.

The next section outlines the problem. Subsequent sections develop
a minimum miss, and a zero miss control for the general problem. A
later section treats the estimation of the unknown target acceleration.

Finally, the analysis is carried to conclusion for the case where the

kinetics of the airframe are independent of the kinematic state.
1
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Figure 1. Engagement Geometry




SECTION II

FORMULATION OF THE GUIDANCE PROBLEM

This formulation structures the guidance problem to separate the
kinematics of the intercept from the dynamics of the missile. The motion
of the target is acceptéd as an uncontrollable input to the problem; how-
ever, the kinetic state equation can be augmented with a target model.

Consider first the intercept kinematics.

1. KINEMATICS
Let the vector position and velocity of the target (T) and inter-
ceptor missile (I) be represented in an inertial frame by y and v, as

illustrated in Figure 1.

i S i D -

i (1)
| b e b S
:

Defining the relative position and velocity of the target with respect

to the missile yields
B
¥ . (2)
: G St
&
2 Letting the vector x represent the kinematic state of the intercept,

y
x =

§ v
7
*
e
; 3

£
K




then

where

In (3) the identity and null submatrices reflect the dimension of the

problem.

2. KINETICS

The airframe/autopilot response state is designated as z and satis-

fies the linear equation
z = Dx + Ez + Fu (4)

subject to the airframe control u (thrust, control surface deflection,
etc.). The dimensions and components of the coefficient matrices in
(4) are missile dependent and provide the generality in the problem.

The intercept kinematics are coupled to the airframe dynamics by

a; = Gz + Hu (E))

Thus any linearized airframe describable by (4) and (5) is subject to

the analysis.

3. OPTIMAL GUIDANCE

The conventional guidance performance index for homing missiles is

of the form .
f

t
o

where Sf, R, and Y weigh the costs associated with terminal miss, control

4




cost and time respectively. In those cases where the terminal miss is
the significant cost, it is logical to attempt to constrain the final
position y(tf) to zero and to develop the corresponding control law

under this condition. Equation (6) may be replaced by
t

f
J = f(}suT Ru + y)dt
t

and 2 (7)

Tx(tf) =0

i i g

The equations (3-7) are collected below.

F where

Minimum Miss

i x=Ax+BGz+BHu-BaT
. z = Dx + Ez + Fu (8)
i te
T T
3 = tax(ep) S.x(t) +f (su’ Ru + y)dt ;
; 3
o
Zero Miss
:
5 x = Ax + BGz + BHu - Ba,
g z = Dx + Ez + Fu
b 9
z:g Tx(tf) =0
- kg
. Je § O’ Ru+ y)dt
3 t
B o
&
[
&
] 5
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SECTION III

MINIMUM TERMINAL MISS

If the performance index in (8) is augmented in the usual manner,

the Hamiltonian is

.

H = %uT Ru + y + 3 [Ax + BGz + BHu - BaT] + uT [px + Ez + Fu] (10)

The resulting boundary value problem is

x = Ax + BGz + BHu - BaT x(to) i Y

z = Dx + Ez + Fu z(t ) = z
o (o]

AWk k=T B ACt.) = S, x(t.) (11)
f £ £

Bwe@ B &gy Mt =0

g =gt (@B APy

H(tf) =0

The computation of the control gains is achieved via the inverse

formulation

»
I

=Q A +Qu+t Q,

N
I

QAT Qg

leading to the equations

61 = AQ, + QlAT + QZGTBT + BGQZT - BHR 1u'BT Q (t) = sf'1
= T T _ sl 2T }

Q = AQ, + QE" + QD" + BGQ, - BHR™! ¥ Q,(tp) = 0

63 = AQ, + BGQg - Ba, Q3(tf) =0 (12)




Q,‘ - QZ (12)
(Contd.)

65 = EQg + QSET +DQ, + QzTDT - Qg (ty) = s:'l

66 = EQg + DQ, Qg (tg) =0

*
The nonsingular diagonal matrix S¢ is used for the computation of

the inverse problem and its elements are set to zero in the solution for

the gains.

The resulting control vector u is

P -
[ u le + Kzz + K3
|

where

K, = —R'l(HTBTpl + FTPZT)
(13)
K, = —R'l(HTBTP2 # FTPS)

K, = -R—l(HTBTPB + FTP6)

;‘ and
| o e e S e W
? PRGNy -y )

- -1 _ T,-1 -1

T ~ =1 -1

P, =-P

3 1% = F

2%
T
higl T BNy = R

The particular case of interest is that in which the kinetics of

the airframe are indeper »nt of the intercept position and velocity, i.e. ;




D = 0.
In tnis case, the equations (12) are easily integrable yielding
£ =1 T T

QE (t-t) FR ~ F OE (t-t) dt + S

*-1
£

— =

Qs

‘

t
3
¢, (t-7) B R F - Gy (1] @ET(t-r) dt

(15)
t

f
-1 TT T BT T -1
éA (t-1) [BHR ~ H'B - BGQ2 = Q2G B ]QA (t-1) dt + Sf

tg
Q3 = -.,.¢A (t-1) Ba,, (t)dt
t

where ¢A and ¢E are the transition matrices for A and E.
b, =

and

¢E by E¢E ’ ¢E(o) = I-

*
The elements of Sf are set to zero in the resulting expressions

for the elements of Q.

The minimum terminal miss control law is determined by (13) - (15).

The case where the terminal miss weighting 1is large is solved by con-

straining the terminal position, as is done in the next section.




SECTION IV

ZERO TERMINAL# MISS

The zero terminal miss, minimum control cost, minimum time problem
formulated in an earlier section and outlined in (9) is solved here.
This problem is also treated in reference 1. The augmented performance
index for the problem

te
T . T
J=v Tx(tf) + [bu” Ru + y + A~ (Ax + BGz + BHu - BaT)
1 .

o T ¥
+ u (Dx + Ez + Fu)ldt

yields the boundary value problem deseribed by

. X = Ax + BGz + BHu - Baj x(to) =X
b z = Dx + Ez + Fu z(tc) =z
R e M) = Ty (16)
i

ji = <GUBX = Bii Mty =0
PR R H(tp) = 0
:% Selecting
] -
E e
§;x + 8,2 + 8,V + 8,
)
;: H = Ssx + S6z = S7v + 58

(16) becomes

-ai, ST o e wvilli




-

e

where

T
S1Ap + D Sg + SoD; = 0 Sl(tf) =0
S.E. + DS, + S.B, = 0 8.(t.) = 0
2E2 ¢ * 518 2(t¢
T T
DS, + 5,0, + S,F, = 0 S,(t,) = T
S.H, + S.G +DTS=0 S, (t.) =0
gy + 5,6, 8 4 (g
(17)
T - —
SSAZ + G BTSl + S6D2 =0 Ss(tf) =0
S E. + GBYs. + 5B, =0 S (t.) =0
62 g T Bghy 6(t¢
¢'8Ys. +s.c. + S, F, =0 S (t,) = 0
g B0y * Scby 7{t¢
GIBTS, + 5.6, + S.H, = 0 So(t.) =0
4 T 8585 T 5H, glte
-1 ,.T.T T
A, = A - BHRT (H'B'S +F's,)
Ly -1 T T
B, = BG - BHR | (H'B'S, + F'S)
-1 T T
C, = -BHR™ (H'B'S, + F'S)
T T
D,=D-FR ' (WB'S +Fs)
(18)
1 T.T T
E,=E - FR - (H'B'S, + F'S)
-1 4 1] T
Fy= -FR ' (W'B's, + F's))
o -1 ,.T.T | aett
G, = -BHR ™" (u'B"s, + Flsg) - Ba,
-1 1 8 T
Hy = -FR™' (H'B'S, + F'Sg)
10

B

i

T A T ST

R R T

o




g i

T T T

o

"‘

S

-,

Y T

Inspection of (17) and (18) shows that all unknown matrices except

S. and S7 are null. Leaving

3
§, + AT83 + DTS7 =0 S,(tp) = '
57 + ETS7 + GTBTS3 =0 5,(t.) =0 (19)
ol (HTBTSS + FTS7)v |

The invariance of the terminal manifold

o

¥(t) = SgX + §,,Z + S, v + 8,
implies
Sq + SgA + S;0D = 0 Sg(te) = T
Sio * S1gF + SgBC = 0 S39(ts) = 0
(20)
. =} g T 3 2
S1y ~(SgBH + S, F) R~ (HB'S; +FS,) =0 8y4(te) = ©
512 ~ SgP8p = 0 S12(tg) = 0
where
R (S.x +S..z+ S_.]
11 9 10 12

Therefore the control law for zero miss is

=1 T-T T -1
u =R (HB'S, +F S7) S11 (S9x + S

3 z+ S

10 127

where the navigation, airframe, and target motion components are evident.

11
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e

> 5%

-

!’
o~
L8

-ls

-1 T.T
K. =R (H'B'S 11 9

T
1 3 + F S7) S

-1

=] T.T T
K2 = R (H'B 83 +F 87) 511 le

=1 _T_F T -1
K, =R (HB'S, + F S7) S11 S

3 3 12

For the uncoupled airframe case where D = 0, the equations (19) and

(20) are integrated for computation of the optimal gains. Integration

yields

(tf -t)1

3 £
S;0= S, = ./.89(1) BGQ; (t=1) dt
|

te (21)

510€8) = = | 15,00 F + 5.(x) BH) RL (5,5 (1) F + §g(1) BH) T dt

J
te
Slz(t) = - Sg(T) BaT(T) dt
t
hete 0. * g 5 1
where ¢, -¢E ¢ (0) =

The target maneuvering term of the control for the uncoupled case

can be written

e
K3 = K30f(tf - 1) aT('t) dt (22)
t
- -1 T_.T T -1
where K30 R (H'B 53 + F 57) Sll

12




Also
K3 = K30 (tf - t) [VT(t) - VT(t)] (23)
i
!
where VT(t) represents present target velocity and V(t) is the average o

relative velocity on the terminal interval (t, tf). The need for

effective estimation of target motion is recognized.

e

LTS wOT R e R

A SN AP 550 .

,_..v:.i”{ iy

_—




SECTION V

TARGET MANEUVERING

For minimum miss control the target maneuver term of the control is

=1
]

T = Q3 - Ky

where
=1, T.T A
Ky = -R (HBP+F Py )
s e T
K, = =R “(H B P+F F.)
Also
te
Q, = .I.%33(:-T) Ba (1)dt
t
tf
Q6 = f363(t-1) BaT(T)dT
t
where
N
833 ¥36
T =
3;63 366

is the state transition matrix corresponding to
Xa

For zero miss guidance the target maneuver component of the

control reduces to

e

-] T.T T
up = -R "(H'B S3+F S7zl- Sg(T)BaT(T)dT.
7

(24)

(25)




In both the minimum miss and zero miss problems, the segment of the
control due to the maneuvering target requires a weighted integral of
ape This control can be implemented for the deterministic case if a

reliable estimate of aT can be obtained from an on-line reconstructor.
Such an estimate may be taken from a linear observer, if the unknown

target acceleration is modeled by a linear equation

a, =Ma +M (26)

’E 1°F 2

This assumption is partially justified by consideration of the dominant
time constants of the target compared to the normal intercept time. In
most cases a constant or ramp acceleration adequately describes the
target motion in this interval. If the states x and z are completely

measurable,

a simple reduced-order linear observer for ap may be used. To facili-
tate the development, this approach is taken, although a higher order
observer can be used if components of x and z are not directly measur-

able but are observable.

The equations are

X = Ax + BGz + BHu - BaT
z =Dx + Ez + Fu
aTleaTTMZ
1
If an estimate ar satisfies
8 = 5 4+ 1% 27

& T

15




where |

2T = (LB+M1);T - L(Ax+BGz+BHU) + M, (28)

then

;T - AT = (LB+M1)(;T—aT) (29)

and the matrix L may be chosen to give the desired convergence for the
observer. In the actual implementation, line-of-sight angles and rates
will replace position and velocity in the observer model, and some com-

ponents of z can be added to the observed state, as mentioned.

16
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SECTION VI

TARGET INTERCEPT SITUATIONS ‘
USING
OPTIMAL GUIDANCE WITH TARGET ESTIMATION

Situation I Kinematic Example

A preliminary example is one of a longitudinal planar intercept of
a target with an unknown, constant acceleration by a point mass missile.
To facilitate the solution, a zero miss constraint with quadratic

missile acceleration cost is assumed. Since the lateral motion is com-

pletely uncoupled, the same type of control is applicable in that
plane.

The equations are

Yy = v
v =a;, - a
kg
J=15% .l:a% dt 5 y(tf) =0
0 1 0
Here A= B =
0O O ~1
D=0 H=1 R=1

Integration yields from (21)

s = [0 tgj

S,, =-1/3¢t3
/ g

£
S12 = ."(tf-r) BT(T)dT
¢ 17




where

The control is
te
= 2 =
a; (3/tgz)y + (3/tg)v + (3/tg )f(tf ) ap(t)dr

|

t

If the coordinate axes are chosen such that the down-range coordinate

is along a non-rotating line of sight, the line-of-sight angle ) is

A %y(t)/rg(t)

where rg(t) is the range-to-go, which depends on the target and

missile accelerations, as well as present relative velocity and

position.
y = Ar
3 & *
b V=;\r +X;
! g 8
3 H t
: ence . £ ﬁ
= (3/t 2 +r t ) + (3r _/t )r + (3/t 2 t.-1) a d it
ar 3/ g )(rg o 8) ( rg/ g) (3/ g ) t( £ T) aT(T) T &

If the range-to-go is decreasing steadily along the line of sight,

I

the commanded acceleration becomes i
‘ [

R f
i a; = 3rox + (3/tgz).ln(tf-r) aT(T)dr f
t

In any case, if the control for intercept of a maneuvering target is

required, the target acceleration normal to the line of sight ar must

& be estimated. If ay is an unknown constant as specified, it is
4 18
4




Jr——

modeled
ap =0

Hence
M, = 0 !
Hz =0

In this case the target observer model is

o a8
aT aT - 2V

A

T = ~hyap = L8y

e

where 22 may be taken large enough to satisfy convergence requirements

for the observer.

4 if a constant estimate of aT is achieved, then é.

ap = (3/e Dy + (/e v + 3/:>.;T !

Due to the terminal constraint, the miss distance will be reduced to
zero no matter what error exists in the target estimate (at, perhaps,

a prohibitive terminal control gain). The control cost will, however,

reflect the error in a .

et s

f For comparison, assume that ﬁ
&
, ML :
then _i
2 i
a; = (3/:g )y + (3/e v + (3/2)va, b
: ;
Thus y = 0 corresponds to ignoring target maneuvers, and y = 1 cor-
& responds to optimal control. The reduction in control cost from that

19




obtained by not using a target estimate is

L X 2
AJ = 9(2 Y)YaT tg /8

While any target estimate (for constant accelerating target) such
that 0<y<2 represents an improvement in cost, the minimum cost is
obviously achieved when the estimate is perfect.

n
IS

Situation II One-Time-Constant Missile

A more realistic situation occurs when an airframe state exists in

the missile model. In this case the equations of intercept are

MW
v =a, - a;
z = a(u - 2z)

0 1 0

A= B =
" 0 0 -1
)
@ D=(0 0) E = -a |
; F=a G =g

H=20 |

Setting

R =2
F and
; s =1
&
-

20
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e

s

)%
a P
Kl o - 2
a
Ky=-%%
a T a
Ky =3 (B Qy + PQp)
where
it
atg
P2=We
£
g
¢ t e
o
L Al N
Fg = 895 Z " w2
T tf tf
e (t-1) aT(T)dT - aT(T)dT
t t
Qg =0
where
tg=tf-t
Finally, :
-at o
bagle 8 (1-¢ 8- ats)
s — =2ats

at
6adg + Zaagzt; + 6a32tg— 6a2g2t8- 12a32tge & + 3g2 - 3g2e »

The substitution yields

g =K.y R v+ K2 4K

11 12 2 3
where
at
6a2g (L-e 8- atg)
o Suie —at -at
6ap + 2a3gzt; + 6agztB - 6a232t§ - 12032t8e 8 + 3g% - 3g%
K12 = Kq1 &

21




-at
o e ™
K2 Kll (T tg o e )

s

l(3 = Kll .I:(tf-r) a,r(‘l')d‘t

If a reduced observer is used to reconstruct the target acceleration

for K3, equations (27, 28) yield

v
a. + L.y + 2

Bl Balte: S
¥ A G R B S
e Dl G e e WL iR
where the error e = a;, ~ ap decays according to
é = —lze

If the target acceleration is almost constant over the duration of the

intercept, m, and m, are taken as zero. If 21 is taken to be zero for

convenience,

dy = ~lyap + Lyg2

The observer is shown in Figure 2.

22
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~n

v-n)
-

Figure 2. Linear Observer

Typical intercepts are shown in Figures 4 - 12. Parameter

values for these simulations were chosen as follows:

o =1
B =1
BRI
tf=2

Situation III Two-Time-Constant Missile

A still more realistic tactical missile situation exists when the

rigid-body rotation state is included, as described in Figure 3.

23
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Figure 3. Two-Time-Constant Missile

¥
If the initial line of sight is taken as the x-axis, for small 8 {
1 the equations of intercept are as follows:
yp = Y1 =V

v Vo T Vix T Vo s Vo T g

B
ke Vg < Vi "

: v (T/

, v = (T/M)6

Iy )

C C
6+ P

@D
]




e S P et e TR e A e

e st i o B —

yielding

.

v = g6 + aT

5 !

aw + Bu

De
]

€
]

Ar optimal guidance problem is formulated with

t

£
J = y(tf)2 + A."uzdt
o

In the format of Section II,

=
[l
= 1
= O
o}
L}
| 1
® o

(-g 0)

o
[}
lO O'
(=] o
[}
[

-5

Solving for the Q and subsequent gain matrices in (13-15)

:

: Kl(tg) = Kll(tg) [1 tg]

% gt 2 -atg
¥ Ky(e) = Ky (ep) [- s w(ede ]
; 9

f: K3(tg) = Kll(tg) .’.(tf't) aT(t)dt

t

; 25
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where
BW(t )
K11t = 3We )
g
2 '
- 8 2t 2 - at +1 -1
W(e) 83[(!5 oa’t ? - at +l)e ]
and
a.tg gt 2
V() = e [Cl(tg) +£Cp () - —5-2 c3(c8)]
- W(t c,(t
(£)) C )
242 aS¢ 5 ol 3
Cl(tg) =1+ s—_—)\a7 [-—n-g— + _LG + atg - sinh (atg)]
g3 a*t * ot 2
Cz(tg) = 5——)\“6 [- ———8—24 - 5~ 1 4+ cosh (utg)]
= e - +
C3(tg) o [ = atg sinh (utg)]
24 2
2 ot
= gﬁ—- ___8___ -+ -
LS e 1 - cosh (at.)]
The optimal control deflection is o
uopt = Klly + K12v + K216 + K22w + l(3
Figures 13-20 give typical trajectories for this intercept.
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Parameter values for these simulations were taken as follows:

a =1
B =1
g = 100
tf-Z
A =1
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